Neutrino events from a supernova were first captured in 1987, when a star in the Large Magellanic Cloud exploded, seen here in a wide-field image from Hubble. Credits: NASA/STScI By Korena Di Roma Howley For a particle with no charge and nearly no mass, the neutrino gets a lot of scientific press—and it’s no wonder it’s captured the attention of physicists (though non-physicists might, for the most part, be unaware that scientists have built massive underground water tanks thousands of feet below mountains to capture these particles from space). Known as ghost particles, neutrinos interact with matter so weakly that around a thousand trillion of them—en route from the sun or perhaps an ancient supernova—are passing through you right now. In fact, they’re the most abundant of all particles that contain mass, and because of this tiny amount of mass (the lightest neutrinos are millions of times lighter than the electron) they can change types, or oscillate, as they travel throug
brought to you by the American Physical Society