Skip to main content


Showing posts from October, 2017

Separation by Scattering: Scientists take on an isotope challenge

You can split sunlight into a vibrant array of colors by sending it through a prism, as fans of physics (or Pink Floyd ) know well, or by bouncing it off a mirror through a refractive medium like water . In an exciting but less colorful way, a team of researchers from the University of Chicago recently demonstrated in the American Physical Society’s journal Physical Review Letters that you can split neon gas into the specific varieties, or isotopes, of neon that compose the gas in an analogous way. This could be a more cost- and energy-efficient method for enriching isotopes, a key component in many medical technologies, energy systems, and other applications.

From Butterfly Wings to Solar Cells

You may associate butterfly wings more closely with pop culture and chaos theory than with cutting-edge materials science, but the delicate wings have a lot more to offer than the plot of sci-fi movies. In new research published last week in the journal Science Advances , a team of scientists from Germany and the United States reveal how a technique inspired by black-winged butterflies could lead to more efficient solar cells.

Hello, Multi-Messenger Astronomy!

As we posted Monday , it has certainly been a busy season for the scientists behind the Laser Interferometer Gravitational-Wave Observatory ( LIGO ) and its European counterpart, Virgo. Yesterday’s announcement of a neutron star merger is especially exciting because it’s the first detection made with gravitational waves that could also be viewed using optical telescopes. Within just a few hours of the initial gravitational wave detection and the gamma ray burst that arrived 1.5 seconds later, telescopes all over the world began to focus their gaze on the same region of the sky, catching a multispectral “ kilonova ” in action. “It was this extraordinary 2-to-3 day period,” said Aidan Brooks, staff scientist at the California Institute of Technology working on LIGO. “Everybody was completely elated and we just had this sort of amazing science flow in immediately after making this detection.”

Scientists Free Laser Cavities to Embrace New Shapes

From medical technology to cat entertainment, lasers are one of the most revolutionary inventions of the last 75 years. Now, one of the key components of lasers may be in for a revolution. In new research published in the AAAS journal Science , researchers from the University of California, San Diego (UCSD) demonstrate an innovative design for the optical cavity of a laser. This development could help manufacturers pack laser components into less space on a chip, accelerating the development of light-based computing , among other applications.

A Neutron Star Collision: Gamma Rays & Gravitational Waves

Gravitational waves have been on our radar non-stop lately, from LIGO's fourth reported detection —enhanced by data from Italy's Virgo project —to this year's physics Nobel going to three of LIGO's cofounders. But here we are again and, far from getting old, the news is more exciting than ever: we've picked up a new kind of signal, from merging neutron stars rather than black holes. That's not all, though—while black hole mergers are expected to be difficult or impossible to see, this collision produced electromagnetic waves across a broad portion of the spectrum, allowing multiple telescopes to pick up the signal and giving us our first confirmed glimpse of a binary neutron star system coalescing into a single object.

Sci-fi Physics: How would you design a self-healing spaceship?

Recently, a reader by the name of Robert wrote in to ask a fun question, with an even more fun answer. I'm writing a story, and trying to find a material that acts like a liquid under high pressures, but also acts as a solid at low pressures. I'm trying to design a kind of fictional armor for my spacecraft, I want something that will fill holes produced by impact and weapons fire. The only problem is: I don't know if something like that can exist.

Quantifying Chaos to Understand Liquids

For those readers in regions where autumn is quickly approaching, a pumpkin spice latte might be just the thing to help you relax. As scientists like Moupriya Das and Jason R. Green from the University of Massachusetts Boston know, however, zoom in on this seasonal treat and the world is anything but relaxing.

Texas A&M Students Make Physics Fun, With "Real Physics Live" Video Series

Have you ever seen air frozen solid? What about a tricycle with square wheels that can actually be pedaled? These oddities and more are on display in Real Physics Live , a new series of videos from physics and astronomy students at Texas A&M.

Ecology Without Species?

Until recently, microbiology has been a science done largely in petri dishes, looking at a few million copies of one organism and asking simple questions trying to suss out how it’ll behave in the wider world. What does it eat? Does it breathe air like we do, or is it an anaerobe , to which oxygen means death? Now, however, there’s a radical new understanding sweeping the scientific world—and researchers are having to devise new tools to keep up.

Caught in the Act: The Quick Escape of Electrons

When hit with an energetic particle of light, an electron orbiting the nucleus of an atom can break free in less than one quadrillionth of a second. Exactly what happens during this fraction of a second is difficult to capture, but there is a lot to be gained by doing so. Mapping the interactions between an escaping electron and the other particles inside of an atom will bring us closer to being able to control the behavior of an electron or other subatomic particle inside of an atom—and maybe even bring us closer to creating new states of matter.

Ask a Physicist: Chasing the Sun

Colin, from Newfoundland, Canada wrote in this week to ask: The Trans Canada Highway runs fairly straight. If I was to start at the border of Ontario and Manitoba and, as soon as the sun came up, began to drive west at 100km/h. How many more hours of sunlight would I be able to gain? Colin, Great question—and a fun idea for a roadtrip! Let's see if it's practical. There are a few ways to approach this problem; we'll look at two of them. Standing still on the longest day of the year at the latitude of the Trans-Canadian Highway—about 50° from the equator—will net you 16 hours and 19 minutes of sunlight for starters. Let's be optimistic and take those 19 minutes for refueling, seeing as you're probably going to run down your tank at least twice, so you've got 16 hours of travel time. You've specified a speed, so that makes things relatively easy—how far can we get in 16 hours at 100 km/h? Obviously, 1600 km! Assuming we're staying on the road and

The Shape of Randomness

We often rely on shapes and patterns when navigating the world. Poison ivy or an innocent plant? A nasty rash or the imprint of the textured wall you were leaning against? Similarly, scientists often use shapes and patterns to interpret datasets. Do the points follow a straight line? Appear in clusters? On the street and in the lab, shapes help us organize information, interpret data, and even make predictions.

Physics in the Autumn Sunrise

The sun is an hour over the horizon. It's the first week of October in Maryland, and there's something uniquely enchanting in how the light catches the tips of the trees. What is it that makes this morning sunlight so spectacularly yellow-gold? As with most things, the answer—at some level—comes down to physics.

Gravitational Waves Catch 2017 Nobel

A long time ago in a galaxy far, far away...two monstrously large black holes,  perhaps as old as the universe itself , collided. Nearly a billion years later, in late 2015, the Advanced LIGO detectors in Hanford, WA and Livingston, LA came online—just in time to catch the signal as it went by. The men who masterminded this enormous endeavor, observing a warping of spacetime smaller than a proton over a scale of several miles, were recognized this morning for their efforts with the announcement that they would receive the 2017 Nobel prize in physics.

Nobel Week 2017: Physics—Three Guesses Who

It's here, ladies and gentlemen! The biggest week of the year for the recognition of "boons to mankind"—the annual announcement of the Nobel prizes—kicked off today with the awarding of the medal for physiology/medicine.