Skip to main content


Showing posts from October, 2016

A New Style of Power Generation

Fashion has a way of circling back to earlier times, although often with a twist. From bellbottoms to bootcut and stretch pants to leggings, styles often seem to move forward and backward simultaneously. In one aspect, however, we are always moving forward. With smartwatches that can alert you to an incoming call, dresses adorned with LEDs , and bracelet fitness trackers, the market for wearable technology seems to be expanding right along with our capabilities.

Everything Old is New: Kickstarter Campaign to Reissue Newton's Principia Gains Momentum

On any list of famous names in science, Sir Isaac Newton's is always near the top. Sure, he had his crazy side , but his contributions to mathematics and physics changed the world of science forever. The law of gravity, the foundations of calculus—we owe so much to Newton's work that the fundamental laws of mechanics and motion bear his name. Now, neophyte publisher Kronecker Wallis  is hoping to bring Newton's work to a new generation of readers by creating a new edition of the Principia Mathematica ,  the foundational text where Newton's laws of motion were codified for the first time. The reissue of Newton's Principia  promises a minimalist design  to contrast  with the complexity of its content. Image Credit:   Kronecker Wallis

That's No Space Station: How Mars' "Death Star" Moon Got its Crater

With its signature crater, the largest of Mars' two moons, Phobos, is sometimes called the Death Star, calling to mind the “technological terror” prominent in the Star Wars films. The moon has not only spurred the public's imagination, but that of astrophysicists as well. Many had wondered how the impact that created such a huge crater could have done so without destroying the entire body. At nine kilometers in diameter, the crater, Stickney, takes up a huge amount of the moon's surface—for scale, the entire moon is only 70 kilometers around.

"Is This Phone Vegan?": Blood Component May Double Battery Life

Just about everything that's considered a "gadget" these days—from your phone to your laptop to the wireless earbuds Apple's forcing you to buy—runs on lithium-ion batteries. They're cheap, powerful for their weight, and can go through a few thousand charge cycles before wearing down, properties which have earned them their title as the champion workhorses of the portable digital age. New and better technologies are always on the horizon, though:  lithium-oxygen  batteries promise to be the next big thing, with the potential to store fifteen times the energy of their lithium-ion counterparts. There are still some kinks that need to be ironed out before the technology is viable, but scientists may have just overcome one of the biggest hurdles between us and this exciting new tech. The discovery comes from a ubiquitous but surprising source: red blood cells.

Manipulating Light by Checkerboard

From Vans shoes to Pinterest cakes and the 2020 Olympic Games logo , checkerboard patterns draw us in. Their contrasting colors have symbolized duality, co-existence, and harmony throughout history. They cover floors, flags, and furniture. In work that puts a 21st century spin on checkerboards, a team of Japanese researchers recently demonstrated that a special kind of checkerboard can be used to create state-of-the-art optical tools.

Is Planet Nine Pulling Us Closer?

It’s not time to update the posters, rulers, books, felt sets , lollipops , and mnemonics just yet, but astronomer Michael Brown anticipates that it will be by the end of next winter. Planet Nine , a predicted gas giant orbiting the sun far beyond Neptune, explains so many mysteries of the solar system, he says, that’s it’s hard to believe it doesn’t exist. The latest of these is the curious case of the six-degree tilt of the sun.

How Much Does it Cost to Blow Up a Planet?

A curious reader wrote in today with an odd and ominous inquiry—how much would it cost to power the laser of the Death Star? We're by no means the first ones to turn an analytical eye to everyone's favorite space opera, but outlandish questions like this are always a good opportunity to bring a bit of fun to mathematics.

Your Friday Reading: "Obscurantism"

It’s Friday afternoon! Let’s look into the archives of physics and pretend we’re still working.

From Urinals to Printers: Enough with the Splashing

My local beaches and swimming pools are closed until next year, but in bathrooms, kitchens, and operating rooms worldwide, it’s always splashing season. Whether it’s a spray of liquid from raw meat thrown hastily on the cutting board or body fluids from a surgical tray going airborne, splashes aren’t just annoying—in some cases they can cause real damage. They can compromise health, safety, and the effectiveness of pesticides, along with printing techniques, forensic interpretations of events, manufacturing processes, and more.

Intriguing Data

Why do theoretical physicists write papers explaining preliminary results?

Untangling the Mystery of Cosmic Ray Sources

The north star indicates north. Seeing the moon overhead means...that the moon is overhead. It sounds obvious, right? But not everything works this way. Cosmic rays are high energy particles produced in astronomical events. They careen through space at very high speeds, some eventually making their way to Earth. Studying the cosmic rays that hit Earth and our atmosphere can tell us a whole lot about what’s happening out there, but there is a big challenge: unlike light, cosmic rays don’t travel through space in a straight line.

A Natural Law for Rotating Galaxies… What Does This Mean for Dark Matter?

Distant galaxies, black holes, exotics worlds…these are not just the stuff of science fiction; they are also the stuff that makes up our reality. Our quest to understand the universe is thrilling, challenging, and often confusing. Even the basic question “What is the universe made of?” isn’t easy to answer.

"Flatland Physics" Wins 2016 Nobel

To the surprise of almost everyone, this year's Nobel prize in physics went to a trio of scientists who made pioneering advances in the field of topological   physics , exploring the unusual properties that emerge in matter when it's confined to 2D surfaces or thin layers and then cooled to extreme temperatures. David Thouless received half the prize, while Michael Kosterlitz and Duncan Haldane shared the other half. This somewhat unusual distribution comes from the fact that Kosterlitz and Haldane each worked on different problems in the field, while Thouless had a hand in both.

Mission Complete: Rosetta’s Journey Ends, Her Story Continues

It’s the beginning of a story that draws you in, but it’s the ending that leaves you lingering, forever connected to the characters. At least if it’s a good story. The fairy tale of Rosetta and Philae , the first spacecraft and lander to rendezvous with a comet and travel with it in orbit around the sun, came to a close early Saturday morning (EDT) in a well-crafted ending.