In an attempt to unravel how matter and antimatter differ—and why we seem to have more of one than the other in our universe—scientists at the Large Hadron Collider have been studying the production and decay of particles called B mesons. Baryons, (from the greek barus , meaning heavy) such as protons and neutrons, each contain three valence quarks, but mesons (as in meso , or middle) are two-quark systems—one quark and one antiquark. They’re much less stable, contain equal amounts matter and antimatter, and tend to decay quickly into other particles, so they’re a promising tool for trying to ferret out the decay asymmetries that might have led to the state of the universe as we know it today. B mesons in particular are so-named because they contain a “bottom” antiquark, also known as a “beauty” antiquark, leading to the LHCb experiment’s name. However, as so often happens, the result the LHCb researchers found was not the one they were looking for.