Monday, December 15, 2014

Brain-Like Circuits Can Mimic Pavlov's Dogs

Originally published: Dec 15 2014 - 1:45pm, Inside Science News Service
By: Charles Q. Choi, Contributor

(Inside Science) -- Artificial electronic circuits that mimic the pathways connecting neurons in the brain can learn, unlearn and store memories, researchers have reported. These inventions could not only help researchers better understand how the brain works, but could also lead to advanced new computers.

Brains are the most powerful computers known. This is due in large part to their complexity — the human brain has roughly 100 billion neurons, with about one million billion connections known as synapses wiring them together.

Scientists have long strived to mimic the brain electronically using either software or hardware. However, current software simulations of the brain, such as the IBM Blue Gene project, require lots of energy as well as dozens of cabinets of computers, while conventional hardware imitations of the brain are limited by the lack of components that can adequately mimic the way synapses behave, said researcher Shriram Ramanathan, a materials scientist at Harvard University in Cambridge, Massachusetts.

Image credit: Singkham via shutterstock | http://shutr.bz/1wTo36X


The way that synapses work underlies the ability of brains to learn. Synapses control the amount of electric charge transmitted from one neuron to another. The electrical conductivity of synapses can increase or decrease depending on how much they are stimulated, a property known as synaptic plasticity. Memories are encoded using collections of synapses of different strengths.

Conventional transistors cannot easily reproduce synaptic plasticity — for instance, they usually act more like on-off switches, going only either to 0 or 1, instead of ranging across a continuum of values as synapses do. Now Ramanathan and his colleagues have invented a new type of transistor that can mimic synaptic plasticity, developing systems that can learn, unlearn and store memories.

"This work represents a significant departure from traditional electronics," Ramanathan said.

The new device is made with films of samarium nickel oxide, or SNO for short. Unlike silicon and other conventional semiconductors used in electronics, SNO has a great range of electrical conductivities due to strong interactions between its atoms. When these materials are placed in contact with ionic liquids — fluids made up of both positively and negatively charged ions — applying positive or negative electric voltages to such coupled systems can respectively decrease or increase the long-term electrical conductivity of SNO.

"This is a rather new way of thinking about neural circuitry — it's creative and very clever," said materials chemist Eric Garfunkel at Rutgers University in Piscataway, New Jersey, who did not participate in this study.

The scientists then used their devices to conduct versions of Pavlov's famous experiments with dogs, in which canines learned to associate food with the ringing of a bell. The circuits could learn that two electrical stimuli are linked if they repeatedly came at the same time, and unlearn this association if these two stimuli stopped being coupled. The circuits could also store patterns of electrical signals they experienced, mimicking how the brain stores memories. The similarity of these devices to real synapses could help them serve as "an electronic platform to probe fundamental problems in neuroscience," Ramanathan said.

In addition, "in principle, it is possible to use these findings to construct analog cognitive devices that learn from interaction with their environment in a way similar to animals and humans," said neuromorphic computing researcher Michael Schmuker at the University of Sussex in England, who did not take part in this research. "The potential advantage over digital circuits, which are currently used for this task, may lie in lower power consumption."

Ramanathan cautioned this work is only a prototype meant to demonstrate proof of the concept.

"We need to advance this frontier significantly to get towards an actual brain-like entity that has orders of magnitude more connective elements," he said.

One key challenge is the speed of operation of such devices. "Electrons move very fast, but ions move relatively slow," Garfunkel said. Ramanathan suggested their devices could move roughly as fast as real synapses, "but it could be a challenge to get them to work at microprocessor speeds."

The scientists detailed their findings online Dec. 4 in the journal Physical Review Applied.

Charles Q. Choi is a freelance science writer based in New York City who has written for The New York Times, Scientific American, Wired, Science, Nature, and many other news outlets. He tweets at @cqchoi.

35 comments:

  1. In future, electronics circuit will replace human brain. But nowadays students can get all they need from paper writing services. Anyway, human brain always will be more powerful instrument than other.

    ReplyDelete
  2. Thanks for the blog.Really thank you! Keep writing.

    http://cheep-essay24.com

    ReplyDelete
  3. Baggage really are trendy gear and additionally amongst the trendiest types of purses which usually are recognized for simply being useful and additionally for a spaciousness. louis vuitton replica This approach accommodating ladies handbag for females is useful for toting all of the must-haves and the best intended for succeed, class, jaunts and additionally some usages. replica louis vuitton Cup like simultaneously model and additionally truly useful accessories, however these are equally just the thing for travel around. replica louis vuitton Mostly baggage experience couple of short-term contains consequently they are attainable by means of shifting and additionally easily removed band. fake chanel Described experience huge contains that could be put into use like connectors. chanel replica They also have an excessive memory space efficiency to oblige a good number of any normal essential. A lot of baggage come from lgt and additionally big equipment who are intended for all the time functionality in addition to travel around handbags. You’re able to find your right from several various kinds:

    ReplyDelete
  4. Its very useful if every one should follow this
    lduv-wx

    ReplyDelete

  5. its really informative tutorial. Thank you for this tutorial .
    mrstexasamerica

    ReplyDelete
  6. Peoples are giving really nice comments
    lyon-agenda

    ReplyDelete
  7. Beautiful post given by so many peoples. wjdkj

    ReplyDelete
  8. The information's are useful for all the people
    pikkukaupunkilainen

    ReplyDelete
  9. Nice Post and all information's are used to everybody
    oceanlawpublishing

    ReplyDelete
  10. All the post are good and the people nice comments to giving all post
    bognarrudolf

    ReplyDelete

  11. its really informative tutorial. Thank you for this tutorial .
    iteratesolutions

    ReplyDelete
  12. Must be appreciated for the article.
    IkzhiBo

    ReplyDelete
  13. Really nice,everybody like All the Post
    hzsdxc

    ReplyDelete

  14. its really informative tutorial. Thank you for this tutorial .
    Aishopeacademy

    ReplyDelete
  15. Nice to read all post and more innovative
    ncaafootballclinics

    ReplyDelete
  16. its really informative tutorial. Thank you for this tutorial . babblein

    ReplyDelete

  17. Its useful to every one and keep posting
    dsn027

    ReplyDelete
  18. Articles are very nice…Nice comments too. gxshangsi

    ReplyDelete
  19. Peoples are giving the wonderful thoughts for all comments
    gemofive

    ReplyDelete

  20. The information which you people are said here are really good..!!!
    nigerianmusicfactory

    ReplyDelete
  21. Very useful comments are posted and everybody like this
    redhouselanescotland

    ReplyDelete
  22. This comment has been removed by the author.

    ReplyDelete
  23. its really informative tutorial. Thank you for this tutorial .
    yingwenhua

    ReplyDelete
  24. The information which you people are said here are really good..!!!
    Hi-kdy

    ReplyDelete