Skip to main content

Breaking Beautiful

Researchers have found out how orderly patterns of cracks form atop electronics.

Originally published: Aug 29 2014 - 3:00pm, Inside Science News Service
By: Gabriel Popkin, Contributor

(Inside Science) -- Repeating crescents, snail shell-like spirals and a jumble of shapes resembling a Keith Haring painting: These patterns and more can start to adorn old paintings, pottery glazes and even electronics under the right conditions. Now, a team of scientists from France and Chile has revealed the potentially useful mechanism that causes these beautiful but often damaging cracks.

“I think it’s very creative work,” said John Hutchinson, a mechanical engineer at Harvard University in Cambridge, Massachusetts. “These crack patterns are extraordinary.”

The research team first learned about crescent-shaped cracks from a physicist at the Ecole Normale Supérieure de Cachan in France; she noticed the cracks forming on tiny optical devices she had designed. The team then discovered other examples of unusual, highly ordered cracks in previously published papers by different research groups. Some of these patterns had apparently gone unnoticed even by the authors of those studies.

High resolution photograph of cracks in thin layer of glass atop a silicon wafer. The colors come from optical interference between the thin wafer and the glass above.
Image Credit and Copyright: Joël Marthelot (ESPCI) et al./PRL

Nobody seemed to know why such cracks occur. Cracks that appear on thin films like paint, mud and pottery glazes typically grow randomly, with new fractures shooting off at right angles from existing ones. The scientists realized they were seeing a completely different type of crack that grows nonrandomly and can make intricate, orderly patterns in surfaces.

To better understand how the cracks form and grow, the research team deposited spin-on glass, a material commonly used in electronics, onto silicon wafers. The scientists then varied parameters like the glass' thickness and the strength of the adhesion between the glass and the silicon. Under the right conditions, cracks started forming from impurities in the glass or from scratches that the researchers made in the film, and created spirals, crescents and other repeating patterns.

The researchers discovered that for the patterned cracking to occur, the glass had to both fracture and separate from the silicon. As a result, cracks only appeared when the thin film of glass did not adhere strongly to the silicon wafer beneath it. Additionally, if the film was too tough, or resistant to fracturing, cracks did not form.

The scientists also found that regardless of the specific pattern formed, the width of the repeating pattern created by the cracks was always around 32 times the film’s thickness. Similar results have appeared in previous studies, said study coauthor Benoît Roman of the École Supérieure de Physique et de Chimie Industrielles in Paris. The width-to-thickness ratio “is very robust,” he said. “You can see it in many different materials.”

By systematically altering the chemical and physical properties of their glass film, the researchers mapped out the conditions under which the spiral- and crescent-shaped cracks grow. The specific pattern formed depends on the exact shape of the defect that initiates the crack.

In 2012, a research team in Korea controllably grew orderly cracks in a thin film, although that team used a different film material and created a limited variety of shapes.

Because the cracks his team studied rely on a film adhering weakly to a surface, Roman said they are unlikely to appear in conventional commercial products, where films are usually strongly bonded to surfaces. So his team’s findings are unlikely to help design anti-reflective or non-stick coatings, which can crack due to other processes.

“In most cases people make an effort to have very good adhesion with the substrate,” he said.

The team’s findings could, however, help reduce cracking in newer applications involving coatings on soft materials, such as stretchable electronics, organic LED sheets or fuel cells. In these situations adhesion between film and underlying structure is often weaker.

Orderly cracks, if grown in a controllable way, could also be useful as tiny fluid channels or in designing small-scale circuitry. Study coauthor Joël Marthelot, who is now at MIT but previously worked with Roman in Paris, said the crack-forming mechanism could be used to etch tiny patterns in surfaces, which is difficult to do with existing methods. Thus, it’s possible to see crack formation “as a tool instead of seeing it as a failure or something to avoid,” said Marthelot.

Such applications are, however, in the future, Hutchinson said. The team’s current accomplishment is revealing the conditions that prompt the stunning spiral- and crescent-shaped cracks to form.

“I haven’t seen anybody do it as nicely and in as systematic a fashion to generate the kinds of patterns that they see,” he said.

Roman and his colleagues reported the results in the journal Physical Review Letters.

Gabriel Popkin (@gabrielpopkin) is a freelance science and environmental writer based in the Washington, D.C. area. He has written for Science News, ScienceNOW, Johns Hopkins Magazine and other publications.


  1. Nice!! Great info great people great blog. Thank you for all the great sharing that is being done here. Thanks!
    hard drive disposal Beverly Hills

  2. Wheresoever in reality for Cornhole's basis lays, fake chanel North american root beginnings undertake appear to be full towards Cincinnati, Arkansas. These days this is a famous tailgating match and features unfold surrounding the united states as well as being quite possibly appearing undertaken towards many other areas similar to the ENGLISH together with Southwest Photography equipment! You may see Cornhole for countless children portrait food, reunion, outdoor property louis vuitton replica sale or simply holiday getaway obtaining. Additionally, it is famous for provider picnics, rungs, together with tailgate people. Together with to your diehards, you may get tourneys in a good many spots. It does not matter what person thrown the main container within the earliest lunchmoney, this online game is certainly undertaken rather very seriously. Give it a try, together with we understand you're passionate, overly. Many of everyone what person are probably not extremely accustomed yet still when using the foldable procuring trolley will talk to, that which is the authentic elixir for this procuring container? The way in which has it been distinct from a good procuring hermes replica? Good, within the identity again, everyone have already got a good idea to be a good trolley. This means there is a minor rims that you choose to only need to touch together with push distinct from the larger procuring container you must carry it approximately an individual's life and now have it all bring regarding our body to your dresses direct. Utilizing this type of inescapable fact, don’t everyone believe it is extremely uncomfortable together with agitating to include a good hermes replica container mainly for anybody who is being dressed in an individual's commercial outfits? This is exactly why foldable procuring trolley is certainly trending all around you. Everyone only need to touch it all approximately towards your automotive together with in the place. This is very essential for those who picked up numerous food stores.


Post a Comment

Popular Posts

How 4,000 Physicists Gave a Vegas Casino its Worst Week Ever

What happens when several thousand distinguished physicists, researchers, and students descend on the nation’s gambling capital for a conference? The answer is "a bad week for the casino"—but you'd never guess why.

Ask a Physicist: Phone Flash Sharpie Shock!

Lexie and Xavier, from Orlando, FL want to know: "What's going on in this video ? Our science teacher claims that the pain comes from a small electrical shock, but we believe that this is due to the absorption of light. Please help us resolve this dispute!"

The Science of Ice Cream: Part One

Even though it's been a warm couple of months already, it's officially summer. A delicious, science-filled way to beat the heat? Making homemade ice cream. (We've since updated this article to include the science behind vegan ice cream. To learn more about ice cream science, check out The Science of Ice Cream, Redux ) Image Credit: St0rmz via Flickr Over at Physics@Home there's an easy recipe for homemade ice cream. But what kind of milk should you use to make ice cream? And do you really need to chill the ice cream base before making it? Why do ice cream recipes always call for salt on ice?