Serpentine electronics could improve performance of cars and planes.
![]() | |
Experiments in wind tunnels can provide insights into aerodynamics that can improve vehicle performance. Image credit: Georgepehli. Rights info | |
In physics, a plasma is a soup of electrically charged particles. It's the same form of matter found in lightning and stars. It can be created by applying an electric field to a gas — for instance, between two electrodes glued onto a surface.
By positioning electrodes in an irregular, asymmetric arrangement,
one can make the plasma that forms between them move, and push air into
flowing along with it. "The air flow induced in this manner could be
several meters per second — say, 10 to 20 miles per hour," said
researcher Subrata Roy, an applied physicist at the University of Florida in Gainesville.
Scientists reasoned devices that manipulate plasmas could help
control the flow of air over surfaces, such as aircraft or automobiles.
These plasma actuators could in principle increase lift and reduce drag
for safer, quieter and more powerful vehicles. Unlike standard ways of
controlling air flow over surfaces, such as fins or flaps, plasma
actuators have no moving parts, and can be switched off when they are
not needed.
The problem with such technology? Plasma can be very inefficient at
influencing air flow. "For example, only one in 100,000 air particles
get bombarded by energetic ions," Roy said.
As such, researchers wanted to find a way to connect plasma
actuators with air flow as best as possible. While straight, linear
actuators can only generate puffs of air in one direction, Roy and his
colleagues reasoned wavy, serpentine actuators could produce puffs of
air in every direction, improving their chances of coupling with air
flow.
In experiments, they sent smoke lit by green lasers over airfoils,
revealing that serpentine plasma actuators could indeed help control the
three-dimensional flow of air over those surfaces in highly complex,
versatile ways.
"When we first saw the incense smoke green with laser light
literally curling up in all directions, I was truly thrilled," Roy said.
"Generally, in our work, we do not believe it till we see it, so that
was the moment of truth."
Serpentine plasma actuators could help control whether air flows
over a surface in a turbulent or in a streamlined, laminar way. They
could also help keep air flow attached to a surface — the separation of
flow from a surface increases the drag it feels and thus wastes energy
that might ordinarily go to movement. In addition, they could generate
vortexes in a flow to enhance mixing within it, which could help air and
fuel mingle in a combustion engine.
"This uses interesting physics to manipulate flow and produce some
meaningful, very desired results that have the potential to improve the
performances of vehicles," said aerospace engineer Konstantinos Kontis
at the University of Glasgow in Scotland, who did not take part in this
research. "It's unique and novel — I've never seen it before. I find
this technology really exciting."
One challenge Kontis noted plasma actuators face is the real world.
"How might they behave under icy conditions or rainy conditions, or
when they go through clouds? Is their performance compromised?" Kontis
asked. "We need to understand how these devices work under these
challenging conditions, under these more realistic conditions. This
could be tested in unmanned aerial vehicles."
Future research will investigate how the vortexes of air that a
serpentine plasma actuator generates modify the surrounding air flow.
"This will allow betterment of its performance for eventual transfer of
laboratory knowledge to practical industrial applications," Roy said.
Roy and his colleague Mark Riherd detailed their findings in the Aug. 28 issue of the Journal of Applied Physics.
Charles Q. Choi is a freelance science writer based in New York City who has written for The New York Times, Scientific American, Wired, Science, Nature, and many other news outlets. He tweets at @cqchoi.
Roch Mechatronics is Manufacture, Exporter, Supplier of Laboratory and scientific Equipments including Autoclave, Incubators, Environment Growth Chamber, Stability Equipment, Fermenters and various other equipment which are used all over the World in all major laboratories, hospitals and scientific research centers. Go to http://www.rochmechatronics.com . yes, it's possible someone looking for autoclave, equipment, lab, oven, autoclaves information, and they were all end up getting autoclave, equipment, lab, oven, autoclaves info here, cause they know our autoclave, equipment, lab, oven, autoclaves site is the best! :-) . This is site allows you to access specific autoclave, equipment, lab, oven, autoclaves, manufacturer information. Helpful tips, tricks, and suggestion about autoclave, equipment, lab, oven, autoclaves, manufacturer.
ReplyDeletewe manufacture physics lab equipment such as, Electrical Instruments, Heat Laboratory Equipment, Mechanics Laboratory Equipment, Measurement Instruments, Meteorology Earth Science Apparatus, Modern Physics Instruments, Optical Instruments read more
ReplyDeleteWhenever I read Your Post Allways got Something New
ReplyDeleteAutoclaves
Payday loans, day and Fitting cash connected credits, aside from to Automobile develop fund advances. the last word open focus on payday loan supporting you choose on for the proper credit item or administration that has the potential assist you to satisfy your monetary desires.
ReplyDeleteYou there, this is really good post here. Thanks for taking the time to post such valuable information. Quality content is what always gets the visitors coming. Warmtepompen
ReplyDelete