Skip to main content

Snakelike Zaps To Flowing Air Can Improve Vehicle Aerodynamics

Serpentine electronics could improve performance of cars and planes
Experiments in wind tunnels can provide insights into aerodynamics that can improve vehicle performance. Image credit: Georgepehli. Rights info 
The way air flows over surfaces can slow cars down and make airplanes loud when they fly over homes. Now scientists find that it's possible to reduce this drag by using curved electronic devices to generate electrically charged particles that control the flow of air over the surfaces of vehicles. 
In physics, a plasma is a soup of electrically charged particles. It's the same form of matter found in lightning and stars. It can be created by applying an electric field to a gas — for instance, between two electrodes glued onto a surface.
By positioning electrodes in an irregular, asymmetric arrangement, one can make the plasma that forms between them move, and push air into flowing along with it. "The air flow induced in this manner could be several meters per second — say, 10 to 20 miles per hour," said researcher Subrata Roy, an applied physicist at the University of Florida in Gainesville.
Scientists reasoned devices that manipulate plasmas could help control the flow of air over surfaces, such as aircraft or automobiles. These plasma actuators could in principle increase lift and reduce drag for safer, quieter and more powerful vehicles. Unlike standard ways of controlling air flow over surfaces, such as fins or flaps, plasma actuators have no moving parts, and can be switched off when they are not needed.
The problem with such technology? Plasma can be very inefficient at influencing air flow. "For example, only one in 100,000 air particles get bombarded by energetic ions," Roy said. 
As such, researchers wanted to find a way to connect plasma actuators with air flow as best as possible. While straight, linear actuators can only generate puffs of air in one direction, Roy and his colleagues reasoned wavy, serpentine actuators could produce puffs of air in every direction, improving their chances of coupling with air flow.
In experiments, they sent smoke lit by green lasers over airfoils, revealing that serpentine plasma actuators could indeed help control the three-dimensional flow of air over those surfaces in highly complex, versatile ways.
"When we first saw the incense smoke green with laser light literally curling up in all directions, I was truly thrilled," Roy said. "Generally, in our work, we do not believe it till we see it, so that was the moment of truth."
Serpentine plasma actuators could help control whether air flows over a surface in a turbulent or in a streamlined, laminar way. They could also help keep air flow attached to a surface — the separation of flow from a surface increases the drag it feels and thus wastes energy that might ordinarily go to movement. In addition, they could generate vortexes in a flow to enhance mixing within it, which could help air and fuel mingle in a combustion engine.
"This uses interesting physics to manipulate flow and produce some meaningful, very desired results that have the potential to improve the performances of vehicles," said aerospace engineer Konstantinos Kontis at the University of Glasgow in Scotland, who did not take part in this research. "It's unique and novel — I've never seen it before. I find this technology really exciting."
One challenge Kontis noted plasma actuators face is the real world. "How might they behave under icy conditions or rainy conditions, or when they go through clouds? Is their performance compromised?" Kontis asked. "We need to understand how these devices work under these challenging conditions, under these more realistic conditions. This could be tested in unmanned aerial vehicles."
Future research will investigate how the vortexes of air that a serpentine plasma actuator generates modify the surrounding air flow. "This will allow betterment of its performance for eventual transfer of laboratory knowledge to practical industrial applications," Roy said.
Roy and his colleague Mark Riherd detailed their findings in the Aug. 28 issue of the Journal of Applied Physics.

Charles Q. Choi is a freelance science writer based in New York City who has written for The New York Times, Scientific American, Wired, Science, Nature, and many other news outlets. He tweets at @cqchoi.


  1. Roch Mechatronics is Manufacture, Exporter, Supplier of Laboratory and scientific Equipments including Autoclave, Incubators, Environment Growth Chamber, Stability Equipment, Fermenters and various other equipment which are used all over the World in all major laboratories, hospitals and scientific research centers. Go to . yes, it's possible someone looking for autoclave, equipment, lab, oven, autoclaves information, and they were all end up getting autoclave, equipment, lab, oven, autoclaves info here, cause they know our autoclave, equipment, lab, oven, autoclaves site is the best! :-) . This is site allows you to access specific autoclave, equipment, lab, oven, autoclaves, manufacturer information. Helpful tips, tricks, and suggestion about autoclave, equipment, lab, oven, autoclaves, manufacturer.

  2. we manufacture physics lab equipment such as, Electrical Instruments, Heat Laboratory Equipment, Mechanics Laboratory Equipment, Measurement Instruments, Meteorology Earth Science Apparatus, Modern Physics Instruments, Optical Instruments read more

  3. Whenever I read Your Post Allways got Something New

  4. Payday loans, day and Fitting cash connected credits, aside from to Automobile develop fund advances. the last word open focus on payday loan supporting you choose on for the proper credit item or administration that has the potential assist you to satisfy your monetary desires.

  5. You there, this is really good post here. Thanks for taking the time to post such valuable information. Quality content is what always gets the visitors coming. Warmtepompen


Post a Comment

Popular Posts

How 4,000 Physicists Gave a Vegas Casino its Worst Week Ever

What happens when several thousand distinguished physicists, researchers, and students descend on the nation’s gambling capital for a conference? The answer is "a bad week for the casino"—but you'd never guess why.

Ask a Physicist: Phone Flash Sharpie Shock!

Lexie and Xavier, from Orlando, FL want to know: "What's going on in this video ? Our science teacher claims that the pain comes from a small electrical shock, but we believe that this is due to the absorption of light. Please help us resolve this dispute!"

The Science of Ice Cream: Part One

Even though it's been a warm couple of months already, it's officially summer. A delicious, science-filled way to beat the heat? Making homemade ice cream. (We've since updated this article to include the science behind vegan ice cream. To learn more about ice cream science, check out The Science of Ice Cream, Redux ) Image Credit: St0rmz via Flickr Over at Physics@Home there's an easy recipe for homemade ice cream. But what kind of milk should you use to make ice cream? And do you really need to chill the ice cream base before making it? Why do ice cream recipes always call for salt on ice?