Skip to main content

Going Small To Mop Up Big Oil Spills

Reusable, magnetic nanoparticles can remove crude oil from water.

A boat wades through the oily waters of the Gulf of Mexico.
image by Kris Krug, rights
When 4.9 million barrels of crude oil spewed into the Gulf of Mexico following the April 2010 Deepwater Horizon oil rig disaster, cleanup crews rushed to deploy floating barriers to contain crude oil collecting on the water's surface. However, this did nothing for the oil that never reached the top.

Crews released more than 2 million gallons of an experimental dispersant, Corexit, to break up the underwater oil and prevent it from reaching coast lines. Still, tar balls washed up on beaches lining the Gulf Coast and mixed in with the sandy ocean floor. Corexit didn't remove oil. It only broke it down so that the environment could handle the tiny droplets of dispersed oil. But Corexit may have made the oil more toxic, and killed microscopic marine animals at the bottom of the Gulf, one study found.

Now, researchers at Texas A&M University, in College Station, have developed a non-toxic solution to clean up residual crude oil after bulk removal following a spill. They've designed nanoparticles that soak up underwater oil like millions of tiny sponges and remove it from the environment. Each "nano-sponge" is 100 times thinner than a human hair and can hold more than 10 times its own weight in oil. The particles can be removed from the water after absorption and reused after the oil is removed.

"When I was a Ph.D. student, I remember reading about sludge in the Hudson River," said chemist Karen Wooley, the project's lead researcher. "Even back then, I was imagining particles that could be dispersed and sunk to the bottom, take in the sludge and float back to the top."

That's exactly what she made.

The design is based on iron oxide nanoparticles coated with a polymer -- a mixture of Styrofoam and the absorbent material in baby diapers -- that absorbs the crude oil. The polymer layer mixes with water to reach the oil below the surface. And although some water is absorbed, the nanoparticles still take in large amounts of oil. After soaking in the oil, the nanoparticles change color from light tan to black and float to the surface.

Since the iron oxide center is magnetic, a magnet waved over the surface can collect the swollen nanoparticles. The particles are washed with ethanol -- concentrated grain alcohol -- to remove the oil, leaving behind fresh nanoparticles that can be used again and again.

Researchers simulated the Deepwater Horizon spill to show that their system will work in real-world conditions. Crude oil is made of many different compounds, from long carbon chains such as the very flammable category of octanes to dangerous, carcinogenic rings such as benzene. Wooley's nanoparticles absorbed them all.

The nanoparticles are so small you can't see one with your unaided eye, but they can have a huge impact. Soaking up a barrel of crude oil, which is roughly 300 pounds, requires about 30 pounds of nanoparticles.

Still, applied to a 4.9 million barrel spill, the amount of nanoparticles needed would be dizzying. But if the majority of the oil were removed by traditional means, such as burning and skimming, the nanoparticles could handle the remainder.

"It's an interesting opportunity to think about how we can better respond next time," said Helen White, a chemist from Haverford College, in Pa., who studies the Deepwater Horizon spill but was not involved in this research. "In the future we can have more choices in terms of deciding what technology we can use to clean up the environment."

Researchers must resolve several practical questions before these magnetic nanoparticles are ready for real oil spills, from how much to release, to how waves might complicate recovering the swelled-up particles.

"That's the next step -- how to actually use this in the environment," White said.

The particles aren't expensive to make either. Wooley's team estimated that the price is comparable to current oil clean-up technology. The polymer and iron oxide cores are used for consumer applications, so mechanisms are already in place for large scale production of the starting materials.
After that, the two pieces are mixed together in a solution and assemble into nanoparticles without additional intervention.

Although the particles are non-toxic -- similar systems are used for drug delivery -- they are not biodegradable. If any were left behind, they would float around the ocean indefinitely, possibly joining with existing islands of plastic garbage.

"If there are some particles that aren't captured and recovered, it may be better to have particles made of degradable polymers," Wooley said. Her group is looking into polymers made of natural products, such as sugar, that will dissolve into harmless components if left in the environment.

So what of the small droplets of crude oil sit at the bottom of the ocean, occasionally washing up on Gulf beaches? In this Wooley is confident: "If there is crude oil contamination then we have the potential to clean it up."

The research was published in the journal ACS Nano.

-Jenna Bilbrey, Inside Science News Service

Jenna Bilbrey is a freelance writer based in Athens, GA. She tweets at @JennaBilbrey.


  1. Nice post dear keep it up. i really appreciate this thanks for sharing with all of us. i also know about some new oil/chemical spill control site that provide better results in spill cleanup with their effective products.

  2. Something different types of information has been shared by this article with respective to the Concrete Shutter Release Oil with its good probability and covering section.


Post a Comment

Popular Posts

How 4,000 Physicists Gave a Vegas Casino its Worst Week Ever

What happens when several thousand distinguished physicists, researchers, and students descend on the nation’s gambling capital for a conference? The answer is "a bad week for the casino"—but you'd never guess why.

Ask a Physicist: Phone Flash Sharpie Shock!

Lexie and Xavier, from Orlando, FL want to know: "What's going on in this video ? Our science teacher claims that the pain comes from a small electrical shock, but we believe that this is due to the absorption of light. Please help us resolve this dispute!"

The Science of Ice Cream: Part One

Even though it's been a warm couple of months already, it's officially summer. A delicious, science-filled way to beat the heat? Making homemade ice cream. (We've since updated this article to include the science behind vegan ice cream. To learn more about ice cream science, check out The Science of Ice Cream, Redux ) Image Credit: St0rmz via Flickr Over at Physics@Home there's an easy recipe for homemade ice cream. But what kind of milk should you use to make ice cream? And do you really need to chill the ice cream base before making it? Why do ice cream recipes always call for salt on ice?