Skip to main content

Mach 3 Bubble Shockwaves

What's the best way to recover from a week of overeating, movie watching and napping (all very arduous tasks)? I advise sitting back and watching some cool physics videos.

Today we have another featured video from last week's Division of Fluid Dynamics Meeting in San Diego, CA.

The video below shows what happens when a Mach 3 shockwave slams into a helium bubble. Researchers needed a supercomputer cluster to simulate the phenomenon, revealing how density and vorticity (more on that after the jump) evolve during the process.

Video Credit: Babak Hejazialhosseini, Diego Rossinelli and Petros Koumoutsakos from the Computational Science and Engineering Laboratory, ETH Zurich, Switzerland

Simulations in the video focus on two key physical qualities: density and vorticity. Density, as you're probably aware, is simply the amount of mass per unit of volume. In the video, the high density regions are orange whereas the low density areas are blue.

Vorticity, however, is not quite as simple. Vorticity represents how a fluid is rotating at a specific point, and it has similarities to angular momentum. Vorticity has both a magnitude (or length) and a direction.

In the video, the researchers show the strength (magnitude) of vorticity at the various points, but not its direction. If they showed the direction at each point, there'd be a ton of tiny arrows pointing in a variety of directions.

With the aid of these simulations, researchers can learn the complex dynamics behind the shockwave's propagation. But what's the point of looking at these shockwaves, aside from making awesome videos?

One technique cited in the video, shockwave lithotripsy, could benefit from this research. For this medical procedure, doctors direct shockwaves to shatter kidney or bladder stones into many smaller pieces. Now that's my kind of treatment.


Popular Posts

How 4,000 Physicists Gave a Vegas Casino its Worst Week Ever

What happens when several thousand distinguished physicists, researchers, and students descend on the nation’s gambling capital for a conference? The answer is "a bad week for the casino"—but you'd never guess why.

Ask a Physicist: Phone Flash Sharpie Shock!

Lexie and Xavier, from Orlando, FL want to know: "What's going on in this video ? Our science teacher claims that the pain comes from a small electrical shock, but we believe that this is due to the absorption of light. Please help us resolve this dispute!"

The Science of Ice Cream: Part One

Even though it's been a warm couple of months already, it's officially summer. A delicious, science-filled way to beat the heat? Making homemade ice cream. (We've since updated this article to include the science behind vegan ice cream. To learn more about ice cream science, check out The Science of Ice Cream, Redux ) Image Credit: St0rmz via Flickr Over at Physics@Home there's an easy recipe for homemade ice cream. But what kind of milk should you use to make ice cream? And do you really need to chill the ice cream base before making it? Why do ice cream recipes always call for salt on ice?