Skip to main content

Disease Outbreaks: Modeling the Mayhem

In recent years, epidemics caused by HIV, SARS, and swine flu have worried health experts across the globe. While public health officials and epidemiologists have been tasked with combating these outbreaks, physicists have also lent support by modeling disease outbreaks. Researchers at Boston University have delved into how our increasingly interconnected networks contribute to the spread of disease.

A generic influenza virus. Image credit: CDC



Mark Dickison and his colleagues at BU ran computer simulations on the spread of disease between two networks, which could represent two cities, states or countries. The simulations started with one infected virtual person, or node. For each simulation, researchers assigned a probability of spreading the disease to adjacent nodes.

After crunching the numbers, the researchers found that two different types of epidemics can arise. First, systems with strong ties tend to develop outbreaks at the same time. For example, if Springfield has close social and economic ties to Shelbyville, then an outbreak in one city will quickly spill over into the next city. If, on the other hand, both cities are only weakly-connected, then the epidemic can be contained to one city. Even if the two cities are connected, the degree of closeness will determine whether or not the disease can be contained.

The work may seem straightforward, but the researchers now have established key mathematical cut-off points between the weakly-connected and strongly-connected networks.

In particular, the number of neighboring people in contact with an infected person determines whether or not the disease can be contained. The researchers calculated three variables that measure this level of contact: contact only within the first system (e.g. Springfield); contact only within the second system (e.g. Shelbyville); and finally, contact solely between these two systems.

If the number of "infectable" neighbors within either of the individual cities exceeds the number between the two cities, then the epidemic can be contained. But if the inter-city number is higher, then a full-blow pandemic can be underway.

Now that researchers have better modeled epidemics between quasi-independent systems, they hope to apply the mathematical representations to real-life scenarios. If the variables used could be accurately measured in a real world scenario, officials would have a better idea of where the disease would spread. The researchers note that if two systems were going to become infected, then they may be able to more quickly appeal to a higher authority to help address the situation.

You can find this new research posted on the arXiv preprint server.

Comments

Post a Comment

Popular Posts

How 4,000 Physicists Gave a Vegas Casino its Worst Week Ever

What happens when several thousand distinguished physicists, researchers, and students descend on the nation’s gambling capital for a conference? The answer is "a bad week for the casino"—but you'd never guess why.

Ask a Physicist: Phone Flash Sharpie Shock!

Lexie and Xavier, from Orlando, FL want to know:
"What's going on in this video? Our science teacher claims that the pain comes from a small electrical shock, but we believe that this is due to the absorption of light. Please help us resolve this dispute!"

The Science of Ice Cream: Part One

Even though it's been a warm couple of months already, it's officially summer. A delicious, science-filled way to beat the heat? Making homemade ice cream.

(We've since updated this article to include the science behind vegan ice cream. To learn more about ice cream science, check out The Science of Ice Cream, Redux)

Over at Physics@Home there's an easy recipe for homemade ice cream. But what kind of milk should you use to make ice cream? And do you really need to chill the ice cream base before making it? Why do ice cream recipes always call for salt on ice?