Skip to main content

Terraced Droplets

Liquid droplets are usually rounded, as I am sure you know. But when the droplets are made of certain types of long molecules, they turn into terraced pyramids instead.

The molecules in this drop have different structures on either of their ends. The end of one molecule is attracted to only one end of a neighbor molecule, and repelled by the other. The molecules behave a little like magnets, except that it's a chemical attraction that lines them up instead of magnetic fields.

Because of the interaction between the molecules' ends, they form drops built of layers - leading to these pretty physics pictures.

The molecules in a single layer are lined up with each other, but are lined up in the opposite direction of the molecules in the layer immediately above or below.

If there is only enough material in the droplet to for a single layer, it turns into a pancake like the picture below.

I'm not sure what makes the rays that extend out all around, but it sure is cool.

In case you're wondering why you've never seen terraced drops, it's because it only happens for long molecules in very tiny drops. The drops in these images are ten or twenty millionths of a meter across. The researchers took the pictures with a high resolution atomic force microscope.

The images come from an article by Andrew B. Croll, Michael V. Massa, Mark W. Matsen, and Kari Dalnoki-Veress of McMasters University in Ontario and the University of Reading in the UK. It was published today in the journal Physical Review Letters.

Comments

Popular Posts

How 4,000 Physicists Gave a Vegas Casino its Worst Week Ever

What happens when several thousand distinguished physicists, researchers, and students descend on the nation’s gambling capital for a conference? The answer is "a bad week for the casino"—but you'd never guess why.

Ask a Physicist: Phone Flash Sharpie Shock!

Lexie and Xavier, from Orlando, FL want to know:
"What's going on in this video? Our science teacher claims that the pain comes from a small electrical shock, but we believe that this is due to the absorption of light. Please help us resolve this dispute!"

The Science of Ice Cream: Part One

Even though it's been a warm couple of months already, it's officially summer. A delicious, science-filled way to beat the heat? Making homemade ice cream.

(We've since updated this article to include the science behind vegan ice cream. To learn more about ice cream science, check out The Science of Ice Cream, Redux)

Over at Physics@Home there's an easy recipe for homemade ice cream. But what kind of milk should you use to make ice cream? And do you really need to chill the ice cream base before making it? Why do ice cream recipes always call for salt on ice?