Friday, July 21, 2017

Talking in a Bubble: Using Physics to Explain Dialects

When you know the laws of the universe, many things become predictable—the next full moon, the trajectory of a bullet, and even the fate of the Earth. Physics can be an excellent tool for predicting how objects behave under certain conditions. It turns out that physics may also be a valuable tool for predicting where dialects emerge, according to research published this week in the American Physical Society journal Physical Review X.

Read the rest of the post . . .

Wednesday, July 12, 2017

A Study About Nothing

A vacuum is a space absolutely devoid of matter, at least according to the Merriam-Webster dictionary. But if you talk to a physicist you may get a different answer. According to quantum physics, even vacuums are not completely empty. Constant fluctuations in energy can spontaneously create mass not just out of thin air, but out of absolutely nothing at all.

Read the rest of the post . . .

Tuesday, July 11, 2017

Borophene Nanoribbons: A Barbecue-Inspired Breakthrough

Graphene is one of the lightest, strongest, and highest-conductivity materials in existence. Since it was introduced to the world in 2004, many scientists have focused on understanding and harnessing the incredible potential of this two-dimensional form of carbon—but the discovery of graphene also kicked off a search for similar forms of other elements, in hopes that they might have unique and valuable properties as well.

Read the rest of the post . . .

Monday, July 10, 2017

A Star is Born...in Surprising Circumstances

Stellar nurseries, the birthplace of new stars, are not as cozy and color-coordinated as Pinterest nurseries. Stellar nurseries feature dust and gas rather than lovable characters and perfect shades of blue or pink—cold expanses rather than cozy nooks.

As scientists have pieced together the story of how stars form, a model has emerged that highlights the role of a strong magnetic field. However, research recently published in The Astrophysical Journal Letters reveals that stellar nurseries may have environments that are much more varied and complex than previously thought. This information could help us better understand how stars like our sun form.

Read the rest of the post . . .

Thursday, June 29, 2017

Spinning Black Holes Could Create Clouds of Mass

Nothing, not even light, can come out of a black hole. At least, that’s the conventional wisdom, and it’s certainly true that—once the event horizon is crossed—there’s no going back. But for rotating black holes, there’s a region outside the event horizon where strange and extraordinary things can happen, and these extraordinary possibilities are the focus of a new paper in the American Physical Society journal Physical Review Letters.

Read the rest of the post . . .

Wednesday, June 28, 2017

New Simulation Method Predicts Crystal Structures Like Never Before

Materials science is one field where structure makes all the difference in the world. Take carbon, for example—it has two crystalline forms, one of which is soft enough that it can be crumbled with your fingers, while the other is the hardest substance found in nature. The component atoms are identical, but the arrangement of those atoms determines whether they make common graphite or a sparkling diamond.

Read the rest of the post . . .

Tuesday, June 27, 2017

Emptiness Tied in a Knot

O Time, thou must untangle this, not I;
It is too hard a knot for me t' untie. 
-Viola in Twelfth Night by William Shakespeare
The knot Viola speaks of in Twelfth Night is a complex love triangle. Knots are often used to symbolize complicated situations, in addition to anxiety and lasting commitments. Like Viola, when most of us think about knots our focus is on how tightly they are tied. For the scientists who study them however, knots are much more—they represent a unique approach to understanding the universe.

Read the rest of the post . . .

Thursday, June 15, 2017

Ask a Physicist: San Fran in Space

William, from Honolulu, wrote in this week to ask:

If there was a space station/city the size of San Francisco in geostationary orbit, what would it look like from ground level with the naked eye? Would it cast a noticeable shadow?

Read the rest of the post . . .

Tuesday, June 13, 2017

Scientists Use Warped Light to Test Einstein’s Theory and Weigh Stars

When Einstein developed his general theory of relativity, commercial radio didn’t even exist yet. He could not possibly have imagined all of the fancy, high-tech equipment that scientists would use over the next 100 years to test—and verify—his predictions. In fact, he wasn’t even sure that all of his predictions could be tested experimentally because they resulted in such tiny, hard-to-measure effects.


Read the rest of the post . . .

Wednesday, June 07, 2017

Blistering Planet Hotter Than Many Stars

Given its stats, the recently discovered planet KELT-9b probably deserves its own baseball card. The planet and its host star, KELT-9, compose a unique system among the exoplanets discovered so far. KELT-9 is a relatively young, very hot star and its scorching heat warms the near side of the planet to a blistering 7,800 degrees Fahrenheit. KELT-9b isn't just the hottest gas giant so far discovered, it’s hotter than many stars.

Read the rest of the post . . .